

Journal of Organometallic Chemistry 513 (1996) 105-108

Outer-sphere coordination of *o*-phenanthroline in bis[aquachlorotri(*p*-chlorophenyl)tin[.]*o*-phenanthroline]

Seik Weng Ng^{a,*}, V.G. Kumar Das^b

^a Institute of Advanced Studies, University of Malaya, 59100 Kuala Lumpur, Malaysia
^b Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia
Received 24 July 1995

Abstract

The crystal structure of bis[aquachlorotri(*p*-chlorophenyl)tin *o*-phenanthroline] consists of trigonal bipyramidal aquachlorotri(*p*-chlorophenyl)tin units in which the coordinated water is hydrogen bonded to two *o*-phenanthroline bases.

Keywords: Tin; Crystal structure

1. Introduction

In centrosymmetric bis[aquachlorotriphenyltin'ophenanthroline], the coordinated water appears to form four hydrogen bonds ($O \cdots N = 2.96 - 3.31$ Å) to the two o-phenanthrolines [1]. The uncertainty in the hydrogen bonding interactions was attributed to twinning that led to a poor refinement (R = 12.8%) of the model, but nevertheless, the interactions must be weak as the distances exceed distances found in similar aquaorganotin systems [2]. In contrast, the coordinated water in monomeric aquachlorotriphenyltin'3,4,7,8-tetramethylo-phenanthroline forms only two strong hydrogen bonds to the heterocyclic ligand [3]. The hydrogen bonding scheme suggested for the dimeric compound has been re-examined by a low-temperature study of the analogous aquachlorotri(*p*-chlorophenyl)tin complex.

2. Experimental

The complex was obtained as large colorless crystals from the slow evaporation of an ethanol solution containing equimolar amounts of tri(*p*-chlorophenyl)tin chloride and *o*-phenathroline. A $0.25 \times 0.30 \times 0.60$ mm crystal was used for diffraction analysis. The 8545 reflections were measured at -105° C by ω -scans on a Siemens *P*4 diffractometer (graphite-monochromatized

0022-328X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved SSDI 0022-328X(95)05966-0

Mo- $K\alpha$ radiation, 0.71073 Å) (collection range: -13 $\leq h \leq 0, -12 \leq k \leq 11, -23 \leq l \leq 23$) up to $2\Theta = 53^{\circ}$, and were corrected for absorption (min./max. transmission factors = 0.3826/0.4658). The structure was solved by direct methods [4]. Non-H atoms were refined anisotropically; C-bound H-atoms were generated and allowed to ride on their parent C-atoms with temperature factors 1.5 times those of the C-atoms. The H-atoms of the water molecule were located and refined. Refinement on F^2 [5] over all 8460 independent reflections ($R_{int} = 0.0941$) converged to R = 0.0657, $R_w = 0.1322$ for 701 variables and S = 1.073; R = 0.0457 for the 6665 $F \geq 4\sigma | F_o |$ reflections. Atomic coordinates are listed in Table 1.

Crystal data: $[(p-\text{CIC}_6\text{H}_4)_3\text{SnCl}\cdot\text{H}_2\text{O}\cdot\text{o}-\text{C}_{12}\text{H}_8\text{N}_2]_2$, $\text{C}_{60}\text{H}_{44}\text{Cl}_8\text{N}_4\text{O}_2\text{Sn}_2$, FW = 1373.98, triclinic, a = 11.878(5), b = 12.747(4), c = 20.515(6) Å, $\alpha = 84.37(1)$, $\beta = 80.74(3)$, $\gamma = 69.39(2)^\circ$, V = 2867(2) Å³, $D_{\text{calc}} = 1.592$ g cm⁻³, $\mu = 12.91$ cm⁻¹, F(000) = 1368 for Z = 2.

3. Results and discussion

Bis[aquachlorotri(*p*-chlorophenyl)tin *o*-phenathroline] crystallizes as a dimer in which the two symmetry-independent [aquachlorotri(*p*-chlorophenyl)tin *o*-phenanthroline] moieties (*a* and *b*) show *trans*-C₃SnClO trigonal bipyramidal coordination at the tin atoms (molecule *a*: Σ C-Sn-C = 358.5(6), O-Sn-Cl = 176.2(1)°; molecule *b*: Σ C-Sn-C = 357.5(6), O-Sn-Cl = 176.3(1)°) (Fig. 1). The coordinated water

^{*} Corresponding author.

Table 1 Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2)$

Atom	<i>x</i>	у	z	U _{eq}
Sn(1a)	7473(1)	943(1)	907(1)	24(1)
Cl(1a)	2033(1)	1814(2)	1533(1)	46(1)
Cl(2a)	8855(2)	4864(2)	-1374(1)	49 (1)
Cl(3a)	10966(1)	-3312(2)	2957(1)	47(1)
Cl(4a)	7720(1)	- 403(1)	54(1)	36(1)
O(1a)	7375(4)	2202(5)	1697(2)	30(1)
N(1a)	5675(4)	4658(4)	2099(2)	29(1)
N(2a)	7628(4)	4529(4)	1380(2)	30(1)
C(1a)	5713(5)	1259(5)	1098(3)	29(2)
C(2a)	5277(5)	390(5)	1016(3)	27(1)
C(3a)	4144(5)	545(6)	1147(3)	32(2)
C(4a)	3450(5)	1619(6)	1351(3)	34(2)
C(5a)	3851(5)	2520(6)	1428(3)	30(2)
C(6a)	4980(5)	2349(5)	1298(3)	29(1)
C(7a)	7970(5)	2240(5)	238(3)	25(1)
C(8a)	7214(5)	3393(5)	66(3)	27(1)
C(9a)	7471(5)	4217(6)	- 418(3)	31(2)
C(10a)	8530(5)	3857(6)	- 734(3)	30(2)
C(11a)	9316(5)	2738(6)	- 572(3)	36(2)
C(12a)	9029(5)	1939(5)	- 76(3)	32(2)
C(13a)	8611(5)	- 422(5)	1552(3)	25(1)
C(14a)	9645(5)	- 365(5)	1662(3)	30(2)
C(15a)	10377(5)	- 1260(6)	2074(3)	37(2)
C(16a)	10075(5)	- 2208(6)	2406(3)	32(2)
C(17a)	9045(5)	- 2297(6)	2305(3)	36(2)
C(18a)	8320(5)	- 1393(5)	1879(3)	31(2)
C(19a)	5642(5)	5490(5)	1554(3)	26(1)
C(20a)	4719(5)	4668(6)	2414(4)	41(2)
C(21a)	3674(6)	5483(8)	2216(4)	55(2)
C(22a)	3636(6)	6348(7)	1691(4)	53(2)
C(23a)	4637(6)	6400(6)	1338(3)	39(2)
C(24a)	4672(7)	7316(6)	804(4)	50(2)
C(25a)	5640(8)	7359(7)	516(4)	50(2)
C(26a)	6691(6)	6435(6)	704(3)	36(2)
C(27a)	7729(8)	6452(7)	416(4)	54(2)
C(28a)	8678(7)	5515(8)	608(4)	55(2)
C(29a)	8591(6)	4566(7)	1076(4)	45(2)
C(30a)	6699(5)	5481(5)	1207(3)	28(1)

(Sn-O = 2.351(4) Å) in molecule *a* forms a hydrogen bond to the nitrogen atom of its own heterocycle $(O \cdots N = 3.083(8) \text{ Å})$, and another $(O \cdots N =$ 2.873(7) Å) to the nitrogen atom belonging to the base of molecule *b*. The coordinated water (Sn-O = 2.351(5) Å) of molecule *b* in similarly linked to its own *o*phenathroline $(O \cdots N = 3.000(8) \text{ Å})$ and to the *o*phenathroline $(O \cdots N = 2.864(8) \text{ Å})$ of the other molecule (Fig. 2). Several chlorine-chlorine contacts ranging from 3.762 to 3.903 Å are present in the unit cell. The two pairs of hydrogen bonds hold together the flat heterocyclic bases [¹], which are twisted with

Table 1 (continued)						
Atom	x	у	z	U _{eq}		
Sn(1b)	7347(1)	4416(1)	3980(1)	29(1)		
CI(1b)	12829(2)	3287(2)	3417(1)	57(1)		
Cl(2b)	3195(1)	9013(2)	2546(1)	48(1)		
CI(3b)	6674(2)	- 701(2)	5455(1)	59(1)		
Cl(4b)	7116(1)	5262(2)	5030(1)	47(1)		
O(1b)	7437(4)	3616(5)	2980(3)	34(1)		
N(1b)	6679(4)	1161(4)	2926(2)	29(1)		
N(2b)	8791(4)	1139(5)	3086(3)	34(1)		
C(1b)	9076(5)	4222(6)	3766(3)	30(2)		
C(2b)	9767(5)	4062(6)	4295(3)	38(2)		
C(3b)	10921(5)	3776(6)	4183(3)	41(2)		
C(4b)	11376(5)	3658(6)	3559(3)	38(2)		
C(5b)	10728(6)	3824(6)	3032(3)	43(2)		
C(6b)	9575(6)	4106(6)	3141(3)	36(2)		
C(7b)	6034(5)	5907(5)	3521(3)	30(2)		
C(8b)	6194(5)	6524(5)	2912(3)	32(2)		
C(9b)	5337(5)	7495(6)	2606(3)	35(2)		
C(10b)	4282(5)	7815(6)	2929(3)	36(2)		
C(11b)	4088(5)	7232(6)	3542(3)	39(2)		
C(12b)	4968(6)	6287(6)	3835(3)	40(2)		
C(13b)	7086(5)	2793(6)	4434(3)	31(2)		
C(14b)	8000(5)	1812(6)	4678(3)	36(2)		
C(15b)	7877(6)	737(6)	4980(3)	40(2)		
C(16b)	6822(6)	636(6)	5055(3)	43(2)		
C(17b)	5892(6)	1595(6)	4810(3)	42(2)		
C(18b)	6038(5)	2662(6)	4504(3)	38(2)		
C(19b)	7381(5)	184(5)	3302(3)	27(1)		
C(20b)	5640(5)	1171(6)	2895(3)	36(2)		
C(21b)	5233(6)	276(7)	3209(3)	42(2)		
C(22b)	5946(6)	- 708(7)	3572(3)	42(2)		
C(23b)	7066(5)	- 785(6)	3626(3)	33(2)		
C(24b)	7854(6)	- 1792(6)	3996(3)	41(2)		
C(25b)	8916(6)	- 1827(6)	4040(3)	43(2)		
C(26b)	9261(5)	- 855(6)	3746(3)	38(2)		
C(27b)	10354(6)	- 838(7)	3790(4)	51(2)		
C(28b)	10639(6)	106(7)	3504(4)	51(2)		
C(29b)	9836(6)	1109(7)	3144(4)	47(2)		
C(30b)	8516(5)	172(6)	3372(3)	31(2)		

 $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

respect to each other (dihedral angle = $31.1(1)^{\circ}$) in a propeller-like conformation. The hydrogen bonding distances exceed those found in aquachlorotriphenyltin 3,4,7,8-tetramethyl-o-phenanthroline (O ··· N = 2.661(3), 2.767(3) Å; N ··· O ··· N = $60.9(1)^{\circ}$), whose five-membered C-N ··· O_{water} ··· N-C ring is planar (Σ angles = $540(1)^{\circ}$) [3]. The packing appears to be less efficient compared with that of the title complex, as suggested by its density (1.415 g cm⁻³). The distances in the title complex also exceed those found in monomeric aquachlorotriphenyltin 2,2':6',2"-terpyridyl (O ··· N = 2.766(2), 2.807(2) Å; N ··· O ··· N = $107.0(2)^{\circ}$); in this complex, hydrogen bonding involves only the two outer pyridyl groups of the non-planar terpyridyl ligand [6].

The hydrogen bonding scheme of the complex prompted a re-investigation of crystal structure of

¹ o-Phenanthroline crystallizes as a monohydrate in the trigonal $P3_1$ or $P3_2$ space group but no structural details were given in S. Nishigaki, H. Yoshioka and K. Nakatsu, *Acta Cryst.*, B31 (1975) 1220; G. Thevenet, P. Toffoli, R. Ceolin and N. Rodier, *C.R. Hebd. Sci.*, Ser. C, 283 (1976) 671.

Fig. 1*a*. Geometry of the tin atom in molecule *a* of bis[aquachlorotri(*p*-chlorophenyl)tin*o*-phenanthroline]. Selected bond distances and angles: Sn(1a)-C(1a) = 1.964(6), Sn(1a)-C(7a) = 2.225(6), Sn(1a)-C(13a) = 2.252(6), Sn(1a)-O(1a) = 2.351(4), Sn(1a)-Cl(4a) = 2.482(2) Å; C(1a)-Sn(1a)-C(7a) = 113.3(2), C(1a)-Sn(1a)-C(13a) = 115.6(2), C(1a)-Sn(1a)-O(1a) = 91.3(2), C(1a)-Sn(1a)-Cl(4a) = 92.5(2), C(7a)-Sn(1a)-C(13a) = 1129.6(2), C(7a)-Sn(1a)-O(1a) = 80.6(2), C(7a)-Sn(1a)-Cl(4a) = 97.6(2), C(13a)-Sn(1a)-O(1a) = 86.9(2), C(13a)-Sn(1a)-Cl(4a) = 91.7(2), $O(1a)-Sn(1a)-Cl(4a) = 176.2(1)^{\circ}$.

Acknowledgments

bis(aquachlorotriphenyltin o-phenanthroline) [²]. On an image plate system, a super-structure lattice has been discerned from the diffraction pattern [³], and preliminary refinements reveal five independent aquachloro-

triphenyltin o-phenanthroline units, so that the reported bond dimensions are subject to errors inherent in averaging over five units.

² Monoclinic, $P2_1/c$, a = 11.960(1), b = 12.220(1), c = 17.854(1) Å, $\beta = 92.409(6)^\circ$.

³ Monoclinic, $P2_1/n$, a = 21.01(1), b = 12.184(7), c = 51.52(2)Å, $\beta = 101.47(1)^\circ$. We thank Professor Ward T. Robinson of the University of Canterbury for collecting the diffraction data,

Fig. 1*b*. Geometry of the tin atom in molecule *b* of bis[aquachlorotri(*p*-chlorophenyl)tin *o*-phenanthroline]. Selected bond distances and angles: Sn(1b)-C(1b) = 1.961(6), Sn(1b)-C(7b) = 2.229(6), Sn(1b)-C(13b) = 2.286(7), Sn(1b)-O(1b), 2.351(5), Sn(1b)-Cl(4b) = 2.436(2) Å; C(1b)-Sn(1b)-C(7b) = 117.4(2), C(1b)-Sn(1b)-C(13b) = 111.0(2), C(1b)-Sn(1b)-O(1b) = 89.6(2), C(1b)-Sn(1b)-Cl(4b) = 94.1(2), C(7b)-Sn(1b)-Cl(4b) = 129.1(2), C(7b)-Sn(1b)-O(1b) = 82.6(2), C(13b)-Sn(1b)-O(1b) = 83.1(2), C(13b)-Sn(1b)-Cl(4b) = 95.7(2), $O(1b)-Sn(1b)-Cl(4b) = 176.3(1)^{\circ}$.

Fig. 2. Hydrogen bonds involving the water and o-phenanthroline molecules. $O(1a) \cdots N(1b) = 2.873(7)$, $O(1b) \cdots N(1a) = 2.864(8)$, $O(1a) \cdots N(2a) = 3.083(8)$, $O(1b) \cdots N(2b) = 3.000(8)$ Å; $N(1b) \cdots O(1a) \cdots N(2a) = 130.9(2)$, $N(1a) \cdots O(1b) \cdots N(2b) = 124.2(2)^{\circ}$.

and the National Science Council for R&D (Grant No. 2-07-04-06) for support.

- References
- E.J. Gabe, F.L. Lee and F.E. Smith, Inorg. Chim. Acta, 90 (1984) L11.
- [2] V.G. Kumar Das, W. Chen, S.W. Ng and T.C.W. Mak, J. Organomet. Chem., 322 (1976) 33.
- [3] S.W. Ng, Acta Cryst., C51 (1995) 0000.
- [4] G.M. Sheldrick, Acta Cryst., A46 (1990) 467.
- [5] G.M. Sheldrick, SHELXL-93, University of Göttingen, Göttingen, Germany.
- [6] L. Prasad, F.L. Lee, Y. Le Page and F.E. Smith, Acta Cryst., B38 (1982) 259.